首页> 外文OA文献 >Encasing Si particles within a versatile TiO2−xFx layer as an extremely reversible anode for high energy-density lithium-ion battery
【2h】

Encasing Si particles within a versatile TiO2−xFx layer as an extremely reversible anode for high energy-density lithium-ion battery

机译:将硅颗粒包裹在通用的TiO2-xFx层中,作为高能量密度锂离子电池的极其可逆的阳极

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The chemical phenomena occurring at the electrode-electrolyte interfaces profoundly determine the cycle behavior of a lithium ion battery. In this work, we report that silicon-based anodes can attain enhanced levels of capacity retention, rate performance and lifespan when a versatile protective layer of, F-doped anatase (TiO2−xFx), is applied towards taming the interfacial chemistry of the silicon particles. With careful choice of titanium fluoride as a precursor, internal voids can be generated upon in-situ fluoride etching of the native oxide layer and are used to alleviate the mechanical stress caused by volume expansion of silicon during cycling. In the course of F-doping, part of the Ti4+(d0) ions in anatase are reduced to Ti3+(d1), thereby increasing charge carriers in the crystal structure. Hence, the multifunctional F-doped TiO2−x coating, not only minimizes the direct exposure of the Si surface to the electrolyte, but also improves the electronic conductivity via inter-valence electron hopping. The best-performing composite electrode, Si@TiO2−xFx-3, delivered a satisfactory performance in both half-cell and full-cell configurations. Furthermore, we present a study of 1) the Si valence change at the buried interface using synchrotron based hard X-ray photoelectron spectroscopy, and 2) the phase transformation of the electrode monitored in operando using X-ray diffraction. Based on these characterizations, we observe that the Li+ conducting intermediate phase (LixTiO2−xFx) formed inside the surface coating enables deep lithiation and delithiation of the silicon during battery operation, and thus increase the capacity that can be accessed from the electrodes.
机译:在电极-电解质界面处发生的化学现象深刻地决定了锂离子电池的循环行为。在这项工作中,我们报告说,当将多功能的F掺杂锐钛矿(TiO2-xFx)保护层应用于驯服硅的界面化学时,硅基阳极可以获得更高的容量保持率,速率性能和使用寿命。粒子。小心选择氟化钛作为前驱物,在对天然氧化物层进行氟化物原位蚀刻时会产生内部空隙,这些空隙可用于缓解循环中硅体积膨胀所引起的机械应力。在F掺杂过程中,锐钛矿中的部分Ti4 +(d0)离子被还原为Ti3 +(d1),从而增加了晶体结构中的载流子。因此,多功能的F掺杂TiO2-x涂层不仅使Si表面直接暴露于电解质中的可能性降至最低,而且还通过价电子跃变提高了电子传导性。性能最佳的复合电极Si @ TiO2-xFx-3在半电池和全电池配置中均提供令人满意的性能。此外,我们提出了一项研究:1)使用基于同步加速器的硬X射线光电子能谱在掩埋界面处的硅价变化,以及2)使用X射线衍射在操作中监测的电极的相变。基于这些特征,我们观察到在表面涂层内部形成的Li +导电中间相(LixTiO2-xFx)能够在电池运行期间对硅进行深层锂化和去锂化,从而增加了可从电极获取的容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号